

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT/CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

tified)

Subject Name: Basic Electronics

MAHARASHT (Autonomous) (ISO/IEC - 2700

WINTER-19 EXAMINATION

Subject Code:

22216

Model Answer

Important Instructions to examiners:

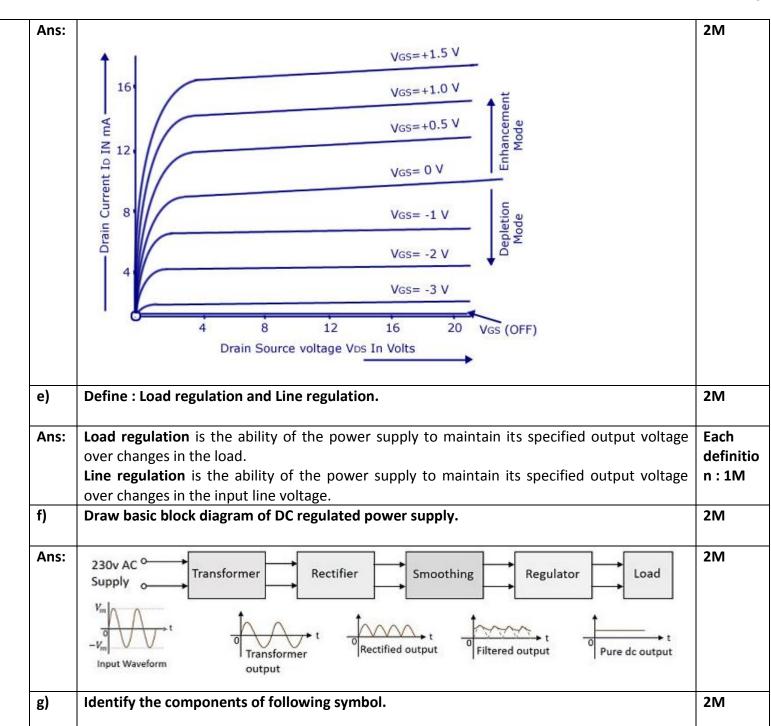
- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in thefigure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.	Answers	Marking Scheme
1	(A)	Attempt any FIVE of the following:	10- Total Marks
	(a)	Define : Intrinsic semiconductor and Extrinsic semiconductor.	2M
	Ans:	Intrinsic – Semiconductor in pure form is called as intrinsic semiconductor. Extrinsic – Semiconductor with added impurity is called as extrinsic semiconductor.	Each definitio n : 1M
	(b)	State any two applications of FET.	2M
	Ans:	 Applications of FET : As input amplifiers in oscilloscopes, electronic voltmeters and other measuring and testing equipment because high input impedance reduces loading effect to the minimum. As Constant current source. They are used to build RF amplifiers in FM tuners and other communication circuits. Because of low noise. 	Any two : 2M

WINTER-19 EXAMINATION

Subject Code:

22216


	 FETs are used in mixer circuits of FM and TV receivers as it reduces inter modulation distortion. Used as Analog switch. As a Voltage Variable Resistor (VVR) in operational amplifiers. 	
(c)	Draw symbol of NPN and PNP transistor.	2M
Ans:	B E C B C C C C C NPN PNP	Each symbol 1M
(d)	Sketch the drain characteristics of N-channel MOSFET.	2M

WINTER-19 EXAMINATION

Subject Code:

```
22216
```

Model Answer

WINTER-19 EXAMINATION

Subject Code:

22216

Model Answer

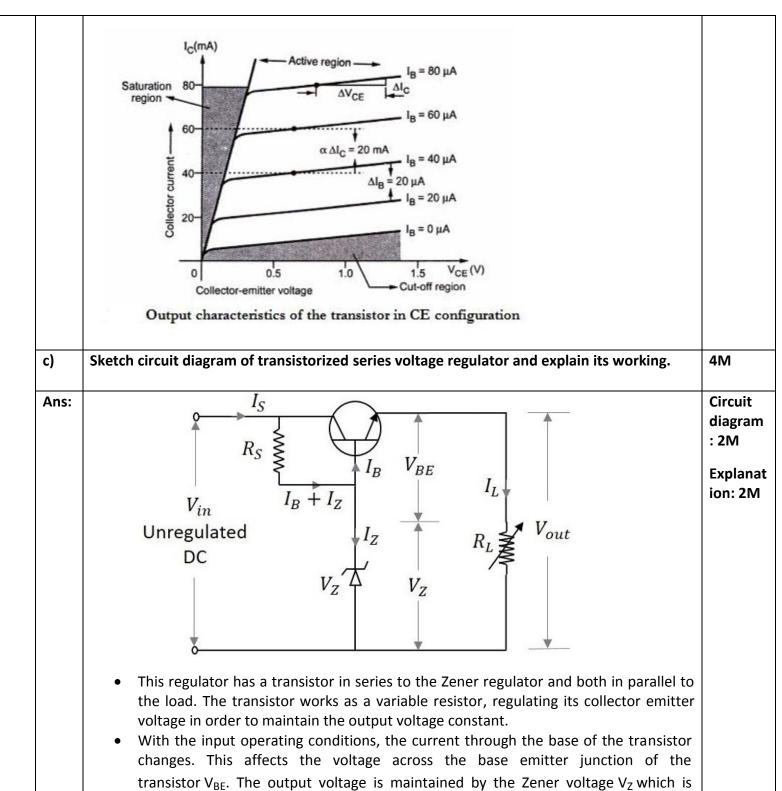
	Ans:	Fig. No. 1 Fig. No. 2 Fig no. 1 : LED Fig no. 2 : Zener Diode	Each symbol : 1M
Q. No.	Sub Q. N.	Answers	Marking Scheme
2		Attempt any THREE of the following:	12- Total Marks
	1		

				IVICI INS		
a)	Compare P-N junction diode and zener diode on following parameters:					
	(i) Symbol (ii) Doping level					
	(iii) Breakdown (iv) Applications	Voltage				
Ans:	Parameter	PN junction diode	Zener diode	Four		
	Symbol			points : 4M		
	Doping level	Low	High			

WINTER-19 EXAMINATION

Subject Code:

22216


	Breakdown voltage	It has no sharp reverse breakdown	It has quite sharp reverse breakdown	
	Applications	Used in rectification	Voltage stabilizer, motor protection and wave shaping	
b)	Sketch input and output c characteristics.	haracteristics of CE configuratio	n. Label various regions on	4M
Ans:		V V _{CE} = 20 V		Each charact ristic : 2M

WINTER-19 EXAMINATION

Subject Code:

22216

Model Answer

WINTER-19 EXAMINATION

Subject Code:

22216

Model Answer

	constant. As both of them are maintained equal, any change in the input supply is	
	indicated by the change in emitter base voltage V_{BE} .	
	 Hence the output voltage Vo can be understood as 	
	$V_{O}=V_{Z}-V_{BF}$	
	$v_O - v_Z - v_{BE}$	
	By applying KVL,	
	$Vo = Vin - V_{CE}$	
	Also, $V_{CE} = V_{CC} - Ic.Rc$	
	• If the input voltage Vin is increased, the output voltage Vo also increases.	
	• But this in turn makes the voltage across the emitter base junction V _{BE} to decrease.	
	If V_{BE} decreases the base current and collector current decreases which in turn	
	increases collector to emitter voltage V_{CE} . Thus reducing the output voltage V_{O} .	
	• This decrease of output voltage compensates the initial increase in output voltage.	
-1)	Thus it acts as a regulator.	45.4
d)	Derive the relationship between α and β of a transistor.	4M
Ans:	Relation between $\alpha \& \beta$:	Relati
	We know that; $I_E = I_B + I_C$ (i)	: 4M
	Dividing equation (i) by I _C .	
	$I_E / I_C = (I_B / I_C) + (I_C / I_C)$	
	Therefore, $\frac{1}{\alpha} = \frac{1}{\beta} + 1$ (Since $\alpha = I_C / I_E$, $\beta = I_C / I_B$	
	Therefore $\frac{1}{\alpha} = \frac{1+\beta}{\beta}$	
	Therefore $\alpha = \frac{\beta}{1+\beta}$	
		1

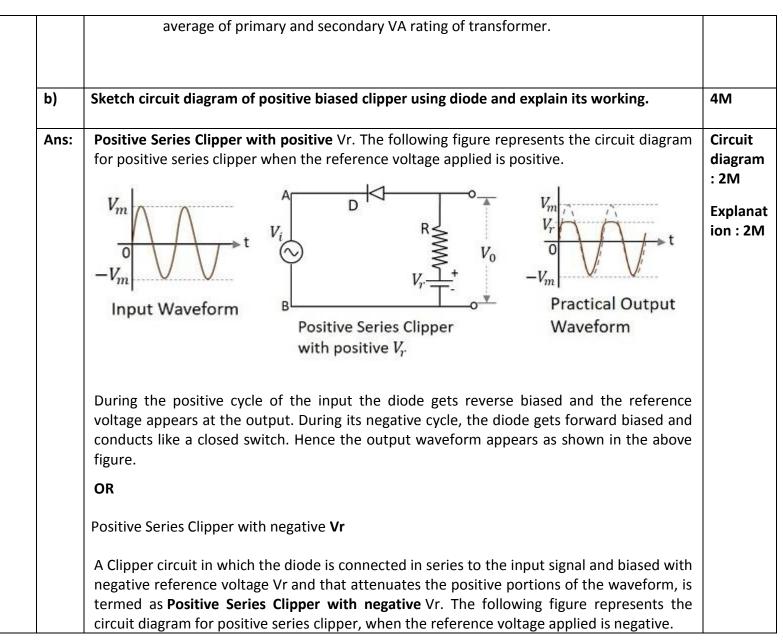
WINTER-19 EXAMINATION

Subject Code:

22216

Model Answer

		$\alpha(1+\beta) = \beta$	
		$\alpha + \alpha\beta = \beta$	
		Therefore $\alpha = \beta - \alpha\beta$ — Optional	
		Therefore $\alpha = \beta (1 - \alpha)$	
		Therefore $\beta = \frac{\alpha}{1-\alpha}$	
Q. No.	Sub Q. N.	Answers	Marking Scheme
3		Attempt any THREE of the following :	12- Total Marks
	a)	Define following parameter of rectifier:	4M
		(i) Ripple factor	
		(ii) Efficiency	
		(iii) Peak Inverse Voltage	
		(iv) Transformer utilization factor	
	Ans:	(i) Ripple Factor - Ripple factor (γ) may be defined as the ratio of the root mean	Each
		square (rms) value of the ripple voltage to the absolute value of the DC	definitio
		component of the output voltage.	n: 1M
		(ii) Efficiency- Rectifier efficiency is defined as the ratio of DC power to the applied	1
		input AC power.	
		Rectifier efficiency, η = DC output power/input AC power	
		(iii) Peak inverse voltage : For rectifier applications, peak inverse voltage (PIV) or pe	eak
		reverse voltage (PRV) is the maximum `reverse voltage that a diode can withsta	ind
		without destroying the junction	
		(iv) Transformer Utilization Factor (TUF) : Transformer Utilization Factor (TUF) is	
		defined as the ratio of DC power output of a rectifier to the effective <u>Transform</u>	<u>ier</u>
		VA rating used in the same rectifier. Effective VA Rating of transformer is the	

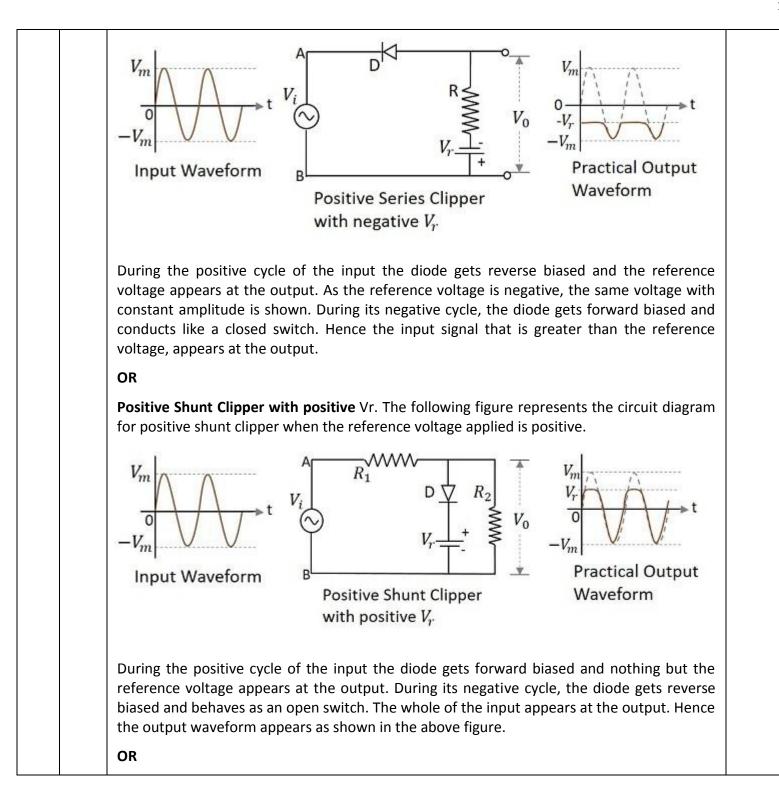


WINTER-19 EXAMINATION

Subject Code:

```
22216
```

Model Answer



WINTER-19 EXAMINATION

Subject Code:

22216

Model Answer

WINTER-19 EXAMINATION

Subject Code:

```
22216
```


	termed as Positive Shunt Clipper with negative Vr. The following figure represents the circuit diagram for positive shunt clipper, when the reference voltage applied is negative. V_m V_m V	
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
	voltage, appears at the output.	
	Define with respect to FFT.	454
c)	Define with respect to FET:- (i) Static drain resistance (ii) Dynamic resistance (iii) Trans conductance (iv) Pinch-off voltage	4M
c) Ans:	(i) Static drain resistance (ii) Dynamic resistance (iii) Trans conductance	4M Each definitic n: 1M

WINTER-19 EXAMINATION

Subject Code:

22216

saturation value is called pinch off voltage.
d) State any four applications of regulated DC power supply. 4M

Q. No.	Sub Q. N.	Answers				
4		Attempt any THREE of	f the following :			12- Total Marks
	(a)	Compare half wave rectifier and full wave bridge rectifier with following parameters. (i) No. of diodes used (ii) Efficiency (iii) Peak inverse voltage (iv) Ripple frequency			4M	
	Ans:	PARAMETERS No. of diodes used	HWR 1	FWCR 2	FWBR 4	Four points : 4M
		Efficiency	40.6%	81.2%	81.2%	
		Peak inverse voltage	Vm	2Vm	Vm	

WINTER-19 EXAMINATION

Subject Code:

22216

	Ripple frequency	50	100	100		
(b)	b) Sketch the experimental setup for CB transistor configuration.					
Ans:	$V_{EE} = \begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & &$					
	If α of a transistor is 0	9.9, Calculate β.			4M	
(c) Ans:	$\beta = \alpha/1-\alpha$	9.9, Calculate β.			4M 4M	
		9.9, Calculate β.				
	$\beta = \alpha/1 - \alpha$ = (0.9)/(1-0.9)	· · ·				
Ans:	$\beta = \alpha/1 - \alpha$ = (0.9)/(1-0.9) =9	NOSFET over JFET. in either enhancemer higher input impeda n resistance due to lo acture.	nce compare to JFET. wer resistance of cha		4M	

WINTER-19 EXAMINATION

Subject Code:

```
22216
```

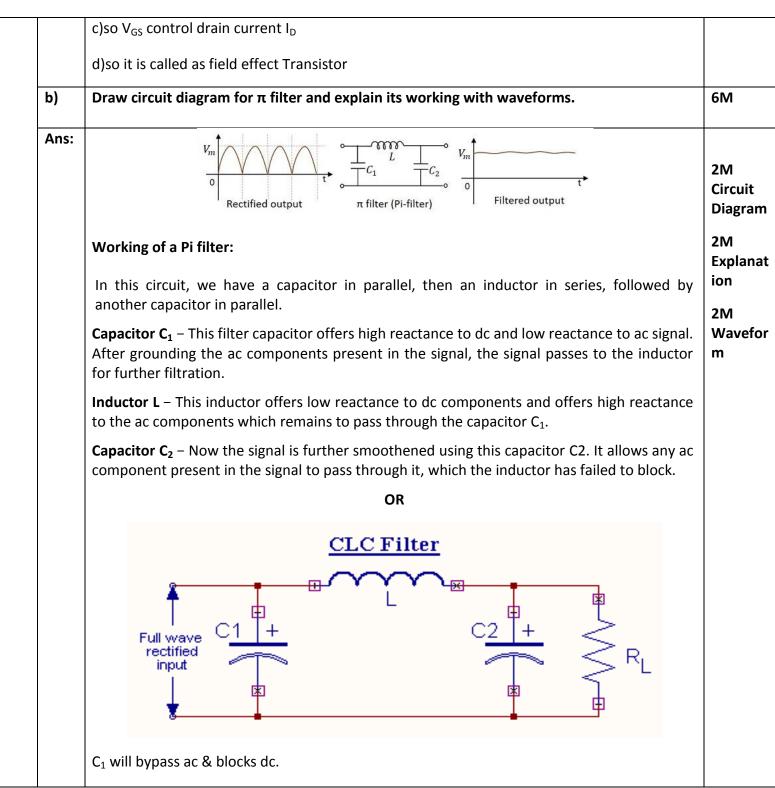
Model Answer

Ans	Block diagram of regulated DC power supply:-	Diagram : 1M
	To Trans- former Rectifier Filter Regulator Vout Load	Function : 3M
	Explanation	
	1)Transformer	
	2) Rectifier	
	3) Filter	
	4) Voltage regulator.	
	1. Transformer:- Transformer can be step up or step dow. Depending on requirement. The AC main voltage is applied to a transformer. It will increase or decrease the amplitude of ac voltage to the desired level and applies it to a rectifier.	
	2. Rectifier: The rectifier is usually a centre tapped or bridge type full wave rectifier. It	
	converts the ac voltage into a pulsating dc voltage.	
	3. Filter: The pulsating dc (or rectified ac) voltage contains large ripple. This voltage is	
	applied to the filter circuit and it removes the ripple. The function of a filter is to	
	remove the ripples to provide pure DC voltage at its output.	
	The DC output voltage thus obtained will change with the changes in load current, input voltage, etc. So it is unregulated DC voltage.	
	4. Voltage Regulator:- The unregulated DC voltage is applied to a voltage regulator. Output of the regulator circuit will be constant voltage under all operating circumstances.	
I		L

WINTER-19 EXAMINATION

Subject Code:

```
22216
```


Q. No.	Sub Q. N.	Answers	Marking Scheme	
5.		Attempt any TWO of the following:	12- Total Marks	
	a)	Sketch construction of N-channel JFET and explain its operating principle.	6M	
	Ans:	Construction of N-channel JFET: D ု Drain	3M Construc tion	
		$\begin{tabular}{ c c c c } \hline P-type & P-type \\ \hline Gate & P-type \\$	3M for operatio n principle with diagram	

WINTER-19 EXAMINATION

Subject Code:

22216

Model Answer

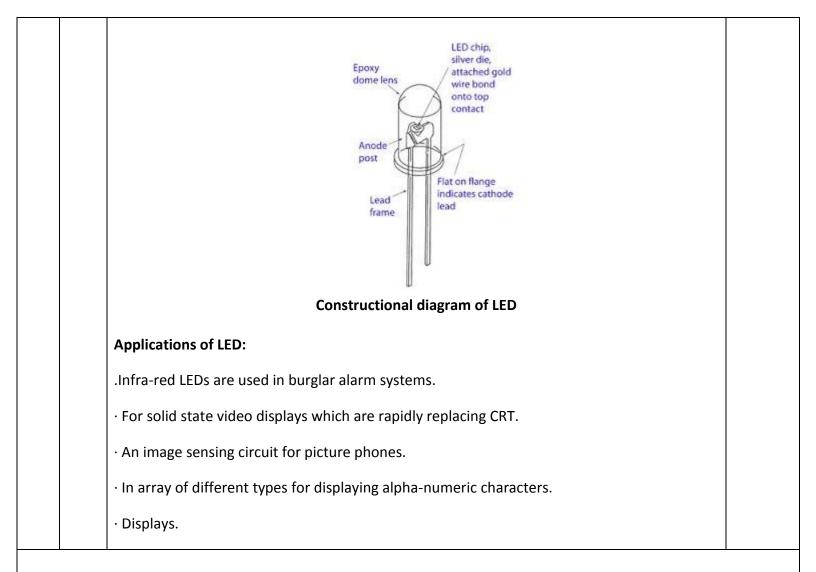
WINTER-19 EXAMINATION

Subject Code:

```
22216
```

Model Answer

	This output is given to inductor, it will block ac and pass only dc.	
	This output is given to C_2 it will again bypass remaining ac and block dc ,so at output we get ripple free dc.	
c)	Sketch constructional diagram of LED and state its three applications.	6M
Ans	Emitted light	3M for construc tional diagram 3M for applicati ons



WINTER-19 EXAMINATION

Subject Code:

22216

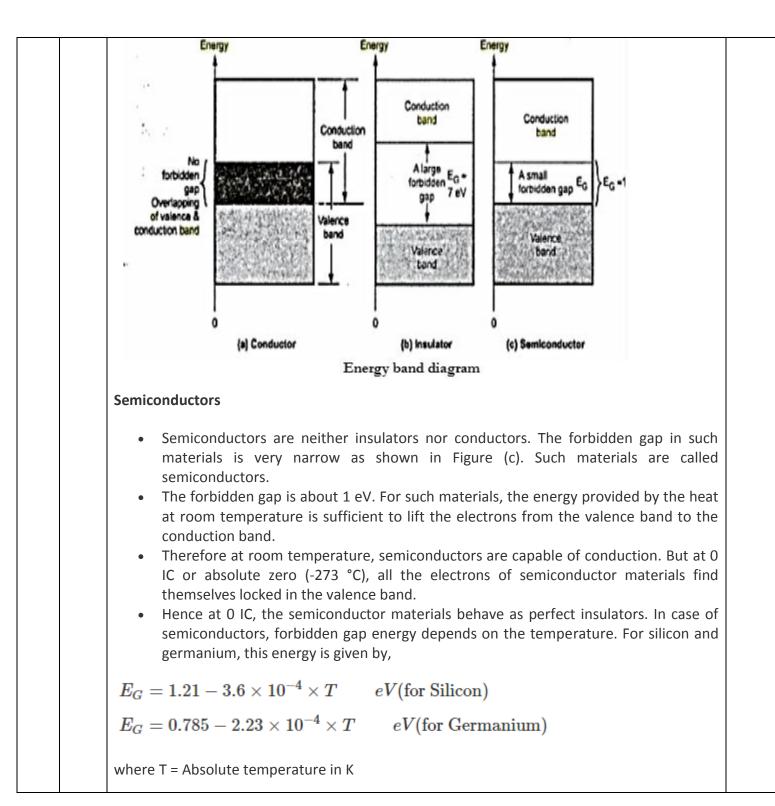
Model Answer

Q. No.	Sub Q. N.	Answers	Marking Scheme
6.		Attempt any TWO of the following :	12- Total Marks
	a)	Describe classification of solids on the basis of energy band diagram.	6M
	Ans:	Classification on the basis of energy theory: Based on the ability of various materials to conduct current, the materials are classified as	2M for classific ation

WINTER-19 EXAMINATION

Subject Code:

```
22216
```


Model Answer

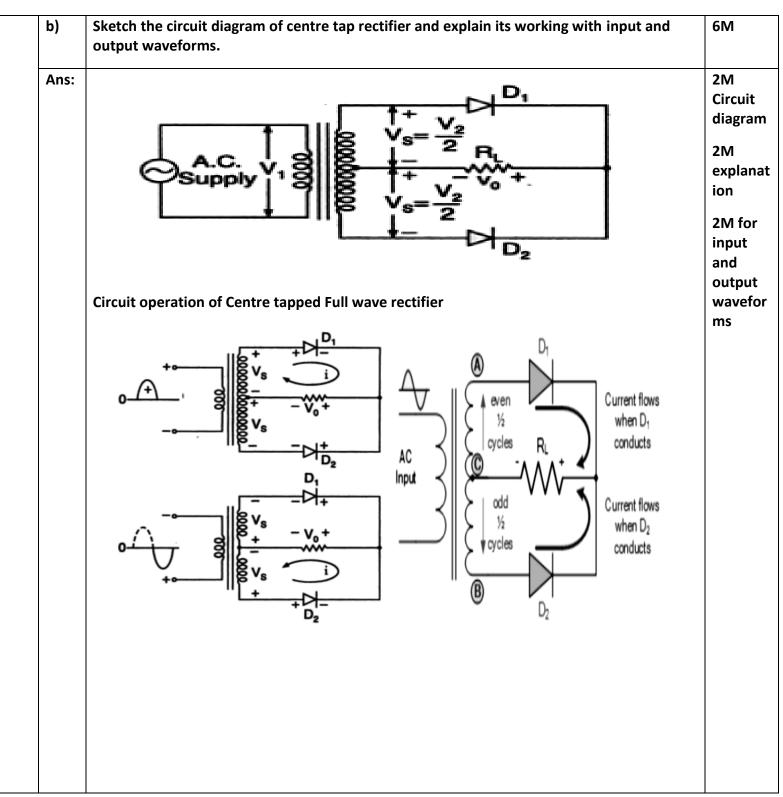
condu	ictors, insulators and the semiconductors.
Condu	uctors
	A material having large number of free electrons can conduct very easily. For example, copper has 8.5x1028 free electrons per cubic meter which is a very large number. Hence copper is called good conductor. Intact, in the metals like copper, aluminum there is no forbidden gap between valence band and conduction band. The two bands overlap. Hence even at room temperature, a large number of electrons are available for conduction. So without any additional energy, such metals contain a large number of free electrons and hence called good conductors. An energy band diagram for a conductor is shown in the Figure (a).
Insula	tors
•	An insulator has an energy band diagram as shown in the Figure (b). In case of such insulating material, there exists a large forbidden gap in between the conduction band and the valence band. Practically it is impossible for an electron to jump from the valence band to the conduction band. Hence such materials cannot conduct and called insulators. The forbidden gap is very wide, approximately of about 7 eV is present in insulators. For a diamond, which is an insulator, the forbidden gap is about 6 eV. Such materials may conduct only at very high temperatures or if they are subjected to high voltage. Such conduction is rare and is called breakdown of an insulator. The other insulating materials are glass, wood, mica, paper etc.

WINTER-19 EXAMINATION

Subject Code:

22216

Model Answer

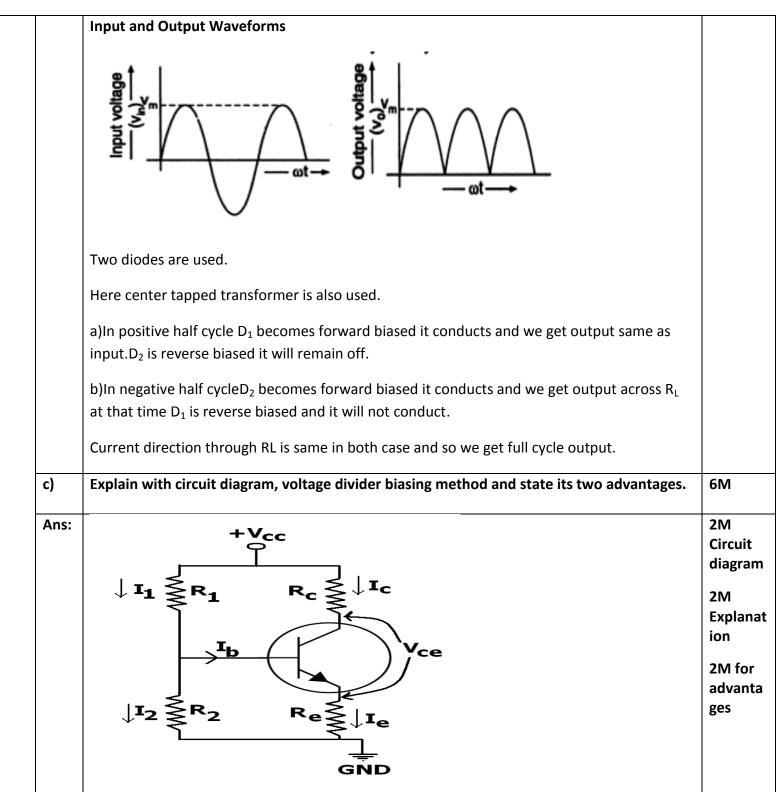


WINTER-19 EXAMINATION

Subject Code:

22216

Model Answer



WINTER-19 EXAMINATION

Subject Code:

22216

Model Answer

WINTER-19 EXAMINATION

Subject Name: Basic Electronics

Subject Code:

22216

Model Answer

a)Here R_1 and R_2 forms voltage divider biasing arrangement.

b)voltage drop across R₂, forward biases the base emitter junction.

c)so base current flows and hence collector current flows in zero signal condition.

d)R_E provides stabilization and R_C controls collector current.

It is most widely used method.

Advantages of voltage divider bias

The circuit operation is independent of the transistor current gain β .

• The resistors help to give complete control over the voltage and current.

 \cdot The emitter resistor, Re, allows for stability of the gain of the transistor, despite fluctuations in the β values.

· Operating point stabilized against shift in temperature.

 \cdot Operating point is almost independent of β variation